Loading…
UWEC CERCA 2025
Company: Geology and Environmental Science clear filter
arrow_back View All Dates
Thursday, April 24
 

2:00pm CDT

Poster 029: Visualization of Electron Dynamics
Thursday April 24, 2025 2:00pm - 4:00pm CDT
A satisfactory understanding of the electron, including the nature of its structure and dynamics, has remained elusive since its discovery by JJ Thomson over a century ago. Recently, one of us has developed a working model for the electron that can explain its most enigmatic properties, including: 1) its dual wave/particle behavior; 2) its spin=1/2 nature; and 3) its ability to orbit a positively-charged atomic nucleus without spiraling into its core. Here, we present a visual depiction of two orbiting electrons in the n=1, s-orbital (helium) shell. We employ the animation program, Blender, to incorporate the time-dependent behavior of the different components of the electron, and show how its spinning components work together, simply following Maxwell’s Laws, to generate a stable electron shell surrounding the atom.
Presenters
SM

Samantha Mitchell

University of Wisconsin - Eau Claire
Faculty Mentor
PI

Phillip Ihinger

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 114: Megalake Chad: New Insights from Topographic Data
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Once roughly five times the size of the Lake Superior in the United States, Megalake Chad was a vast inland lake that has drastically receded over the past 5,000 years, leaving behind geomorphic features and drainage patterns indicative of its former expanse. This study investigates the geomorphic features and hydrology of this ancient lake using topographic data. Specifically, we utilized the Shuttle Radar Topography Mission (SRTM) 30-meter Digital Elevation Model (DEM) for analyses, generating slope maps to enhance our understanding of surface drainage patterns. To identify drainage features potentially overlooked by slope analyses, radar remote sensing data was used. Because much of Megalake Chad's northern basin is in the Sahara Desert radar sensors like PALSAR and RADARSAT are valuable for their ability to reveal subsurface features under the sand. Integrated topographic surface analysis and subsurface mapping offers a promising approach to uncovering buried channels and alluvial fans/deltas. Our findings not only reinforce evidence of a large ancient lake, but also reveal previously underexplored drainage patterns with potential valuable water resources and arable land.
Presenters
DV

Dayne VanderMause

University of Wisconsin - Eau Claire
BY

Bryce Yeo

University of Wisconsin - Eau Claire
Faculty Mentor
TA

Tadesse Alemu

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 115: Gold Mineralization at the Atlas Gold Mine, Western MT
Thursday April 24, 2025 2:00pm - 4:00pm CDT
This project is investigating the nature of gold mineralization at the Atlas Mine, western Montana. Rock and powder samples were provided by LJB Explorations Ltd. to characterize the textural and mineralogical associations of gold mineralization at the mine. These samples included rocks from ore stockpiles, waste piles, and crushed, high-grade samples. The rock powder was processed for heavy mineral concentrates, including gold, using gold panning and a Gemini Table. The rock samples and heavy mineral concentrates were mounted in epoxy then polished to a finish of 1 µm. These samples were then examined using an SEM-EDS with a goal of determining textural and mineralogical associations with gold that could assist LJB Exploration Ltd. in targeting additional gold concentrations on a larger scale. Results from the SEM for the high-grade powder sample produced flakes of gold, roughly 20-30 µm, with associated heavy elements consisting of iron, silver, lead, and trace yttrium. Rock samples had flakes of gold in the range of roughly 20-100 µm in size, with associated heavy elements consisting of primarily iron, with a more substantial amount of silver as well.
Presenters
KW

Kenny Walter

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 131: Petrochronology of Wisconsin’s Volcanogenic Massive Sulfide Deposits
Thursday April 24, 2025 2:00pm - 4:00pm CDT
The Paleoproterozoic Penokean Orogen in Northern Wisconsin is known to host multiple volcanogenic massive sulfide (VMS) deposits which are important sources of Cu, Zn, Pb, Ag, and Au. Despite known large and potentially economic VMS deposits, limited outcrop exposure has hindered detailed reconstructions of the VMS-hosting environment to guide future exploration. Zircon petrochronology can help us give a more complete understanding of the magmatic environment in which they formed. This study sampled felsic igneous rocks to determine the timing and tectonic settings of VMS deposits in the western Penokean Orogen. Samples were pulverized and heavy mineral separates were obtained by various magnetic and density separation techniques. The zircon mineral grains were imaged by cathodoluminescence and backscattered electron microscopy at Laurentian University, Canada. Zircon isotopic (U/Pb, Lu-Hf) and trace element data were analyzed via laser ablation inductively coupled plasma–mass spectrometer (LA-ICPMS). U/Pb isotopic data constrains timing of magmatism. Trace elements and Lu-Hf data constrain the tectonic setting and crustal architecture. Preliminary results have indicated two distinct VMS-forming magmatic events during the Penokean Orogeny that have similar tectonic and magmatic styles.
Presenters
AK

Aidan Kwiatkowski

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 132: Geology of the Plover Au Prospect, Marathon County, Wisconsin
Thursday April 24, 2025 2:00pm - 4:00pm CDT
The Plover Au deposit, located in Marathon County, WI, is host to a series of andesite, schist, and felsic/mafic intrusives which have undergone at least 3 phases of deformation, hydrothermal alteration, and greenschist grade metamorphism. With its proximity to the larger and better explored Reef Deposit, a more complete understanding of the formational history and geochemical footprint of the Plover prospect can add to regional understanding and better gold exploration models. For this study, two holes (PL-76-1 & PL-76-4), totaling ~1,180 linear feet of core were logged and described to highlight the volcanic stratigraphy and lithologic variety. Cores and samples were characterized by petrographic and geochemical analyses. Mineralization at the Plover deposit is characterized by cross-cutting vein networks containing boudins and vugs, and zones of brecciation. Hydrothermal alteration is suggested based on sericite/talc alteration within volcanic strata and zoned sulfide (pyrite, chalcopyrite, pyrrhotite), quartz, and calcite veins and vugs. Since high Au concentrations are typically present within brittle massive/semi-massive sulfide veins, formation of these deposits likely occurred after Penokean deformation/metamorphism and are related to a younger tectonic/magmatic event.
Presenters
DC

Drew Casper

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 133: Geology and Geochemistry of the Round Lake Intrusive Complex and Ti-Mineralization, Northern Wisconsin
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Modern technology and renewable energy require large amounts of metals that are derived from minerals. Many of these resources are imported, and there is a tremendous effort to domesticate our mineral extraction and processing. Several of these critical minerals, such as Ti, are found in Wisconsin, but little data is available to guide future mineral exploration efforts. This study describes the petrology and geochemistry of the Round Lake Ti Deposit in northern Wisconsin using historic drill cores stored at the WGNHS. The Round Lake intrusion that hosts the Ti mineralization is related to 1.1 Ga Mid-Continent Rift magmatism. The main intrusion is a magnetite-ilmenite rich gabbro, ranging from 35-50% magnetite-ilmenite and 15-50% coarse grained plagioclase laths. Movement and flow of magmas during emplacement formed porphyritic and trachytic textures with aligned plagioclase crystals. In addition, there are other intrusive phases associated with the magnetite-ilmenite gabbro intrusion. The anorthosite has 55-90% euhedral plagioclase, 10-15% magnetite, and 5-15% pyroxene. The magnetite rich gabbro and anorthosite make up the intrusion and is crosscut by a fine-grained gabbro and granitic dikes. Petrographic and geochemical data and interpretations improve our understanding of Ti-bearing magmatism in the Mid-Continent Rift system.
Presenters
RJ

Renee Jeutter

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 134: Geology and Geochemistry of the Ritchie Creek Cu-Zn deposit, Northcentral Wisconsin
Thursday April 24, 2025 2:00pm - 4:00pm CDT
The Ritchie Creek Cu-Zn deposit, located in the Paleoproterozoic Penokean Volcanic Belt (PVB) of northern Wisconsin, is one of many volcanogenic massive sulfide (VMS) deposits known in the region. Previous studies suggest that VMS mineralization is concentrated on the western edge of a felsic volcanic center, likely formed in a back-arc or intra-arc rift environment, with mineralization occurring within bimodal volcanic sequences. These interpretations were largely based on core descriptions and comparisons to other global VMS deposits. This study aims to improve the understanding of the tectonic and volcanic setting of the Ritchie Creek deposit by re-examining historical drill cores and stratigraphic units. Over 1,000 feet of historic drill core was logged, and 22 samples were collected for petrographic and geochemical analysis, focusing on trace element characterization to better constrain the volcanic and tectonic setting. Sulfide mineralization is hosted in three main units: a quartz mica schist with disseminated sulfides, a sericite- and chlorite-altered quartz mica schist, and an intermediate meta-felsite that transitions into a rhyolitic tuff with localized sulfides and quartz veins. This project provides insights into the volcanic and tectonic processes that shaped the Ritchie Creek deposit, enhancing the understanding of VMS mineralization within the Penokean Volcanic Belt.
Presenters
HJ

Haley Johannesen

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 135: Rare-element Geochemistry of the Eau Claire River Complex Pegmatites
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Minerals, such as monazite and xenotime, are an important source of rare earth (La, Ce, Nd) and high field strength (Th, Nb, Zr) elements which are essential for modern energy, communication, and military technologies. These critical minerals are often sourced in pegmatites associated with alkalic complexes, such as mines at Mountain Pass, USA, and Mount Weld, Australia. The Paleoproterozoic Eau Claire Volcanic Complex is intruded by granitic pegmatite dikes that postdate peak metamorphism, potentially linking them to 1.7 to 1.4 Ga fractionated alkalic magmas in the region. These pegmatites are highly fractionated, garnet-bearing, and low in calcium. The high concentration U, Th, La, Ce, and other rare earth elements put this pegmatite in niobium-yttrium-fluorine (NYF) class of pegmatites. This study collected bedrock samples from several locations across the Eau Claire Volcanic Complex (Little Falls, North Fork, Muskeg) to describe the trace mineral compositions. The minerals in the pegmatite samples were geochemically analyzed using a scanning electron microscope energy-dispersive X-ray spectrometer (SEM-EDS). The major minerals in the samples are mainly plagioclase, quartz, and biotite. They contain minor mineral chemistry of Fe- and Mn-garnets, samarskites, xenotimes, monazites, thorites, and barites and may represent a potential source for critical minerals in Wisconsin.
Presenters
SG

Samara Gries

University of Wisconsin - Eau Claire
Faculty Mentor
RL

Robert Lodge

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

2:00pm CDT

Poster 136: Is There More to the Mineral Lake Intrusive Complex? Testing a Genetic Relationship with the Rearing Pond Intrusion
Thursday April 24, 2025 2:00pm - 4:00pm CDT
The Mineral Lake Intrusive Complex (MLIC) is a relatively large (50 x 6 km) layered mafic intrusion (LMI) located in northern Wisconsin. Because LMIs are typically rich in platinum, chromium, vanadium, and titanium deposits, the MLIC has excited much interest for its potential to host valuable economic deposits. However, the entire southern boundary of the MLIC is defined by a significant thrust fault that placed the plutonic body on top of older Archaean crust. The fault separated the upper half of the intrusion from much of its lower half (not exposed), where the bulk of the economic deposits are expected to be found. There is an orphan, ~8 km^2 ultramafic intrusion (the Rearing Pond intrusion; RPI) adjacent to and of the same age as the MLIC.  The RPI is composed of minerals expected at the base of a large LMI and may represent early crystallization within the MLIC.  LMIs are characterized by distinct top-to-bottom stratigraphy in their Mg/Fe and Ca/Na ratios. We present whole-rock and mineral Mg/Fe and Ca/Na ratios using XRF and SEM analyses to test the hypothesis that the RPI represents the earliest crystallization in the MLIC, and to estimate the volume of missing material.
Presenters
JC

Jake Cipar

University of Wisconsin - Eau Claire
AM

Avery McKeown-Robbie

University of Wisconsin - Eau Claire
AN

Alyssa Nemeroff

University of Wisconsin - Eau Claire
SP

Sophia Pence

University of Wisconsin - Eau Claire
Faculty Mentor
PI

Phillip Ihinger

Geology and Enviornmental Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA
 

Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date -