Expanded Polytetrafluoroethylene (ePTFE) grafts are commonly used to repair and reconstruct blood vessels in vascular bypass surgeries and peripheral arterial reconstructions. However, current ePTFE grafts often cause scar tissue formation due to their dense structure, limiting long-term effectiveness and integration with the body. The goal of this research is to create an ePTFE graft with properties similar to cells found in an organism so it can fully penetrate, and not have a reaction making a scar tissue. To reach our goal, we expanded and characterized Polytetrafluoroethylene (PTFE), transforming it into ePTFE. The research is currently in a testing phase, where we are evaluating the graft’s performance using Tensile Test, to test their break point, Thermogravimetric Analysis (TGA) to evaluate how the material behaves under different thermal conditions, and Differential Scanning Calorimetry (DSC) to evaluate the melting and thermal behaviors of the sample. These tests help optimize the graft's properties, thermal stability, and biocompatibility, ensuring it can perform effectively within the body and integrate with surrounding tissues.