Small-diameter grafts have revolutionized artery repair since their introduction in 1954, providing life-saving solutions for patients with vascular diseases. These grafts are typically manufactured by extruding expanded polytetrafluoroethylene (ePTFE) into tubes. This research focuses on optimizing the tooling and flow cavity design for paste extrusion of small-diameter vascular graft components. One critical parameter in the extrusion process is the reduction ratio, or the ratio of cross-sectional areas of the material before and after extrusion. By varying tooling position and dimensions, we aim to create optimal reduction ratio profiles for various graft dimensions to facilitate successful extrusion processes.