Organic Light Emitting Diode (OLED) displays use organic compounds to emit light of many different colors on screen technologies. They can produce a wider range of colors and have higher energy efficiency than traditional LEDs. For this research, I will be working with Dr. Radue to investigate OLEDs assembled by Dr. Rybicki’s research group. The OLEDs consist of a glass slide, indium tin oxide (ITO), tris- (8-hydroxyquinoline) aluminum (AlQ3), calcium, and aluminum. Last year’s research revealed that exposing an OLED sample to short wave UV light leads to a reduction in peak transmittance amplitudes. Measurements were taken using Fourier-transform infrared spectroscopy (FTIR), and data from samples exposed and unexposed to UV light was compared and analyzed. Currently, Dr. Radue and I are focusing on changes in magnetoresistance and the IV (current-voltage) curve as the OLED devices are exposed to short wave UV light. If no significant changes occur from the UV light, devices will instead be exposed to an x-ray source. After determining the minimum exposure needed to change magnetoresistance, measurements will be conducted on an uncoated AlQ3 sample exposed to the same amount of radiation. Said measurements will be performed using FTIR, Raman spectroscopy, ellipsometry, and ultraviolet-visible (UV-vis) spectroscopy.