Loading…
UWEC CERCA 2025
Thursday April 24, 2025 2:00pm - 4:00pm CDT
As the use of car dashboard cameras (dashcams) has increased, the availability of dashcam imagery has also increased. In recent years, dashcam imagery has been predominantly used in conjunction with computer vision techniques for autonomous vehicle systems. However, this research explores an alternative application of these technologies in the domain of public safety and security. Specifically, we apply object detection to dashcam imagery to address the challenge of identifying vehicles associated with active Amber Alerts. With the goal of aiding law enforcement in locating abducted children more efficiently, we employ the YOLO (You Only Look Once) object detection model, a state-of-the-art deep learning framework known for its real-time performance and accuracy. Our methodology involves training and fine-tuning the YOLO model on a custom dataset of dashcam footage, incorporating diverse environmental conditions such as varying lighting, weather, and traffic scenarios. Experimental results demonstrate that the model achieves high precision and recall rates in detecting target vehicles, validating its effectiveness for real-world deployment. This research highlights the potential of leveraging deep learning and computer vision techniques to address critical public safety challenges, offering a novel application of these technologies beyond their traditional use in autonomous driving. Our findings contribute to the growing body of work in computer science that seeks to harness AI for societal benefit.
Presenters
MM

Maxwell Megale

University of Wisconsin - Eau Claire
EH

Emily Hopke

University of Wisconsin - Eau Claire
Faculty Mentor
MV

Mounika Vanamala

Computer Science, University of Wisconsin - Eau Claire
Thursday April 24, 2025 2:00pm - 4:00pm CDT
Davies Center: Ojibwe Ballroom (330) 77 Roosevelt Ave, Eau Claire, WI 54701, USA

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link